Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Parasitol Res ; 120(7): 2401-2413, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33844065

RESUMO

The freshwater pearl mussel (Margaritifera margaritifera) is a highly host-specific parasite, with an obligate parasitic stage on salmonid fish. Atlantic salmon (Salmo salar) and brown trout (Salmo trutta f. trutta and Salmo trutta f. fario) are the only hosts in their European distribution. Some M. margaritifera populations exclusively infest either Atlantic salmon or brown trout, while others infest both hosts with one salmonid species typically being the principal host and the other a less suitable host. Glochidial abundance, prevalence and growth are often used as parameters to measure host suitability, with the most suitable host species displaying the highest parameters. However, it is not known if the degree of host specialisation will negatively influence host fitness (virulence) among different host species. In this study we examined the hypothesis that glochidial infestation would result in differential virulence in two salmonid host species and that lower virulence would be observed on the most suitable host. Atlantic salmon and brown trout were infested with glochidia from two M. margaritifera populations that use Atlantic salmon as their principal host, and the difference in host mortality among infested and control (sham infested) fish was examined. Higher mortality was observed in infested brown trout (the less suitable host) groups, compared to the other test groups. Genetic assignment was used to identify offspring from individual mother mussels. We found that glochidia from individual mothers can infest both the salmonid hosts; however, some mothers displayed a bias towards either salmon or trout. We believe that the differences in host-dependent virulence and the host bias displayed by individual mothers were a result of genotype × genotype interactions between the glochidia and their hosts, indicating that there is an underlying genetic component for this parasite-host interaction.


Assuntos
Doenças dos Peixes/mortalidade , Doenças dos Peixes/parasitologia , Truta/parasitologia , Animais , Bivalves/crescimento & desenvolvimento , Água Doce , Especificidade de Hospedeiro , Interações Hospedeiro-Parasita , Salmo salar/parasitologia
2.
Parasitol Res ; 118(5): 1519-1532, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30937615

RESUMO

The freshwater pearl mussel (Margaritifera margaritifera) is an endangered bivalve with an obligate parasitic stage on salmonids. Host suitability studies have shown that glochidial growth and load vary significantly between host strains as well as among individuals of a suitable strain. Variation in host suitability has been linked to environmental conditions, host age and/or size, genetic composition of the host and parasite, or a combination of these factors. In our study, we wanted to investigate if brown trout (Salmo trutta) displayed an age-dependent response to glochidial infestation. We hypothesised that 1+ naive brown trout hosts tolerate glochidial infestation better than 0+ hosts. In order to test our hypothesis, we infested 0+ and 1+ hatchery reared brown trout with glochidia from closely related mothers and kept them under common garden conditions. This allowed us to observe a pure age dependent host response to infestation, as we eliminated the confounding effect of genotype-specific host interactions. We analysed the interaction between glochidial load and host condition, weight and length, and observed a significant age-dependent relationship. Glochidial load was negatively correlated to host condition in 0+ fish hosts and positively correlated in 1+ hosts. These contradictory findings can be explained by a change in host response strategy, from resistance in young to a higher tolerance in older fish. In addition, we also examined the relationship between glochidial load and haematocrit values in the 1+ hosts and observed that haematocrit values were significantly higher in heavily infested hosts. Our results have important conservation implications for the management of wild pearl mussel populations, as well as for captive breeding programmes.


Assuntos
Bivalves/crescimento & desenvolvimento , Bivalves/fisiologia , Interações Hospedeiro-Parasita/fisiologia , Larva/crescimento & desenvolvimento , Truta/parasitologia , Fatores Etários , Animais , Água Doce
3.
Ecol Evol ; 7(5): 1375-1383, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28261450

RESUMO

Host-parasite systems have been useful in understanding coevolutionary patterns in sympatric species. Based on the exceptional interaction of the long-lived and highly host-specific freshwater pearl mussel (FPM; Margaritifera margaritifera) with its much shorter-lived host fish (Salmo trutta or Salmo salar), we tested the hypotheses that a longer duration of the parasitic phase increases fitness-related performance of mussels in their subsequent post parasitic phase, and that temperature is the main factor governing the duration of the parasitic phase. We collected juvenile mussels from naturally and artificially infested fish from eight rivers in Norway. Excysted juvenile mussels were maintained separately for each collection day, under similar temperature and food regimes, for up to 56 days. We recorded size at excystment, post excystment growth, and survival as indicators of juvenile fitness in relation to the duration of the parasitic phase. We also recorded the daily average temperatures for the entire excystment period. We observed strong positive relationships between the length of the parasitic phase and the post parasitic growth rate, size at excystment and post parasitic survival. Temperature was identified as an important factor governing excystment, with higher temperatures decreasing the duration of the parasitic phase. Our results indicate that juvenile mussels with the longest parasitic phase have better resources (larger size and better growth rate) to start their benthic developmental phase and therefore to survive their first winter. Consequently, the parasitic phase is crucial in determining subsequent survival. The temperature dependence of this interaction suggests that climate change may affect the sensitive relationship between endangered FPMs and their fish hosts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA